quat2mat4: Quaternion to Homogeneous Matrix Conversion
Homogeneous Coordinate System Integration
The quat2mat4 function extends 3D quaternion rotations into 4×4 homogeneous transformation matrices. This conversion enables seamless integration of rotation operations with translation, scaling, and projection transformations within unified homogeneous coordinate frameworks.
The mathematical transformation:
Where the 3×3 rotation matrix is embedded within the homogeneous coordinate structure:
This representation preserves all rotational properties while enabling matrix composition with translation and scaling operations.
Temporal Quaternion Field Dynamics
This visualization demonstrates how quaternion-to-matrix conversion enables complex spatial transformations through time-varying rotation fields. The homogeneous matrix form allows for efficient composition with other geometric transformations.
const fragment = () => { const grid = uv.mul(3).fract().sub(0.5) const cellId = uv.mul(3).floor() const hash = cellId.x.add(cellId.y.mul(31.7)).fract().mul(43758.5) const phase = iTime.add(hash.mul(6.28)) const q = vec4( phase.sin(), phase.mul(1.618).cos(), phase.mul(0.707).sin(), phase.mul(2.414).cos() ).normalize() const matrix = quat2mat4(q) const point = vec4(grid, 0, 1) const transformed = matrix.mul(point) const distance = transformed.xy.length() const rings = distance.mul(12).sub(iTime.mul(3)).sin().abs() const color = rings.mul(vec3(0.5, 0.8, 1.0)) return vec4(color, 1) }
The quat2mat4 function bridges quaternion mathematics with homogeneous coordinate systems, enabling sophisticated 3D transformations while maintaining computational efficiency and numerical stability inherent to quaternion representations.