boxSDF: Three-Dimensional Rectangular Distance Field
Fundamental Cubic and Rectangular Primitive Geometry
The boxSDF
function computes the signed distance from any point to a rectangular box. This fundamental SDF primitive supports both unit cubes and custom-sized boxes, forming the foundation for many complex geometric constructions.
Mathematical Foundation
The box SDF operates through coordinate space analysis and distance decomposition:
where represents the absolute coordinates and defines the box half-extents.
For a unit box (no size parameter), the formula simplifies to:
Function Signatures
boxSDF (Unit Box)
Parameter | Type | Description |
---|---|---|
p | vec3 | Sample point position |
boxSDFSize (Custom Box)
Parameter | Type | Description |
---|---|---|
p | vec3 | Sample point position |
b | vec3 | Box half-dimensions |
Implementation Demonstrations
Live Editor
const fragment = () => { const up = vec3(0, 1, 0) const eps = vec3(0.01, 0, 0) const eye = rotate3dY(iTime.mul(0.5)).mul(vec3(6)) const args = [vec3(0.8, 1.2, 0.6)] const march = Fn(([eye, dir]: [Vec3, Vec3]) => { const p = eye.toVar() const d = boxSDFSize(p, ...args).toVar() Loop(16, ({ i }) => { If(d.lessThanEqual(eps.x), () => { const dx = boxSDFSize(p.add(eps.xyy), ...args).sub(d) const dy = boxSDFSize(p.add(eps.yxy), ...args).sub(d) const dz = boxSDFSize(p.add(eps.yyx), ...args).sub(d) return vec4(vec3(dx, dy, dz).normalize().mul(0.5).add(0.5), 1) }) p.addAssign(d.mul(dir)) d.assign(boxSDFSize(p, ...args)) }) return vec4(0) }) const z = eye.negate().normalize() const x = z.cross(up) const y = x.cross(z) const scr = vec3(uv.sub(0.5), 2) const dir = mat3(x, y, z).mul(scr).normalize() return march(eye, dir) }