Skip to main content

polar2cart: Polar to Cartesian Coordinate Reconstruction

Converting polar representation back to rectangular coordinates

The polar2cart functions perform the inverse transformation of cart2polar, reconstructing Cartesian coordinates from polar and spherical representations.

2D Cartesian Reconstruction

For polar coordinates (θ,r)(\theta, r), the Cartesian reconstruction produces (x,y)(x, y):

x=rcos(θ)x = r \cos(\theta) y=rsin(θ)y = r \sin(\theta)

3D Cartesian Reconstruction

For spherical coordinates (r,ϕ,θ)(r, \phi, \theta), the Cartesian reconstruction produces (x,y,z)(x, y, z):

x=rcos(θ)sin(ϕ)x = r \cos(\theta) \sin(\phi) y=rsin(θ)sin(ϕ)y = r \sin(\theta) \sin(\phi) z=rcos(ϕ)z = r \cos(\phi)

Function Variants

FunctionInputOutputDescription
polar2cart(polar)vec2vec22D polar to Cartesian (θ,r)(x,y)(\theta,r) \rightarrow (x,y)
polar2cart3D(r,phi,theta)float,float,floatvec33D spherical to Cartesian
Live Editor
const fragment = () => {
      const r = 0.3
      const phi = uv.x.mul(3.14)
      const theta = uv.y.mul(6.28)
      const sphere3d = polar2cart3D(r, phi, theta)
      const projection = sphere3d.xy.add(0.5)
      const depth = sphere3d.z.mul(2).add(0.5)
      return vec4(vec3(projection, depth), 1)
}