pyramidSDF: Square Pyramid Distance Field
Geometric Apex Structure with Symmetric Base
The pyramidSDF
function generates a signed distance field for a square pyramid geometry. This primitive combines linear tapering from a square base to an apex point, creating architectural and geometric visualizations with precise mathematical control over height and proportions.
Mathematical Foundation
The pyramid distance calculation involves coordinate transformation and multi-dimensional optimization:
The algorithm performs symmetry folding and coordinate remapping:
Distance optimization uses two candidate calculations:
where and is the clamped projection parameter.
Function Signature
Parameter | Type | Description |
---|---|---|
p | vec3 | Sample point position |
h | float | Pyramid height (apex distance from base) |
Implementation Demonstrations
ライブエディター
const fragment = () => { const up = vec3(0, 1, 0) const eps = vec3(0.01, 0, 0) const eye = rotate3dY(iTime).mul(vec3(2)) const args = [0.7] const march = Fn(([eye, dir]: [Vec3, Vec3]) => { const p = eye.toVar() const d = pyramidSDF(p, ...args).toVar() Loop(16, ({ i }) => { If(d.lessThanEqual(eps.x), () => { const dx = pyramidSDF(p.add(eps.xyy), ...args).sub(d) const dy = pyramidSDF(p.add(eps.yxy), ...args).sub(d) const dz = pyramidSDF(p.add(eps.yyx), ...args).sub(d) return vec4(vec3(dx, dy, dz).normalize().mul(0.5).add(0.5), 1) }) p.addAssign(d.mul(dir)) d.assign(pyramidSDF(p, ...args)) }) return vec4(0) }) const z = eye.negate().normalize() const x = z.cross(up) const y = x.cross(z) const scr = vec3(uv.sub(0.5), 2) const dir = mat3(x, y, z).mul(scr).normalize() return march(eye, dir) }