Inverse: Mathematical Reciprocal Transform
Reciprocal Field Generator for Dynamic Visual Mathematics
The inverse
function computes the mathematical reciprocal transformation f(x) = 1/x, creating infinite field gradients and hyperbolic distributions. This function transforms linear space into non-linear domains where proximity to zero creates dramatic amplification effects.
Mathematical Foundation
Property | Definition | Mathematical Expression |
---|---|---|
Basic Transform | Reciprocal operation | inverse(x) = 1/x |
Domain | All real numbers except zero | x ≠ 0 |
Range | All real numbers except zero | y ≠ 0 |
Asymptotic Behavior | Vertical at zero, horizontal at infinity | Approaches infinity at zero, approaches zero at infinity |
Symmetry | Hyperbolic reflection | f(-x) = -f(x) |
Hyperbolic Wave Distortion
This demonstration uses reciprocal transformation to create hyperbolic wave fields where oscillating patterns near zero generate infinite gradients and spectacular visual dynamics.
ライブエディター
const fragment = () => { const time = iTime.mul(2) const pos = uv.sub(0.5).mul(6) const wave = pos.x.add(time.sin().mul(0.8)).sin().mul(0.3).add(0.5) const hyperField = inverse(wave.add(0.1)) const distortion = pos.y.add(hyperField.mul(0.2)) const pattern = distortion.sin().mul(0.5).add(0.5) const r = pattern.pow(3) const g = hyperField.abs().mul(0.1).mod(1) const b = time.cos().mul(0.5).add(0.5) return vec4(r, g, b, 1) }