map: Dimensional Range Metamorphosis Engine
Mathematical Bridge Between Infinite Scales
Range mapping transforms mathematical dimensions by creating seamless bridges between distinct scale systems. This fundamental operation enables dimensional metamorphosis where coordinate systems undergo continuous transformation through precisely calculated proportional relationships.
The mathematical foundation reveals two transformation modes:
Normalization mapping:
Range transformation:
Where the first transforms values from range to , while the second creates direct transformation from to , establishing mathematical correspondence between any dimensional scales.
const fragment = () => { const normalized = map(uv, 0.2, 0.8) const waveAmplitude = mapRange(iTime.mul(2).sin(), -1, 1, 0.05, 0.25) const fieldDistance = normalized.sub(0.5).length() const oscillation = fieldDistance.mul(15).sub(iTime.mul(3)).sin().mul(waveAmplitude) const transformedField = mapRange(fieldDistance.add(oscillation), 0, 0.7, 1, 0) const energyDistribution = transformedField.max(0).pow(2.5) return vec4(energyDistribution.mul(0.4), energyDistribution.mul(1.2), energyDistribution.mul(0.8), 1) }
Chromatic Scale Transformation Matrix
Range mapping creates chromatic transformations that exist beyond conventional color boundaries. By systematically mapping color coordinates between mathematical spaces, new chromatic dimensions emerge through calculated scale metamorphosis.
const fragment = () => { const timePhase = iTime.mul(0.8) const polarRadius = uv.sub(0.5).length().mul(2) const polarAngle = uv.y.sub(0.5).atan2(uv.x.sub(0.5)) const redMapping = mapRange(polarRadius.mul(4).add(timePhase).sin(), -1, 1, 0.1, 0.9) const greenMapping = mapRange(polarAngle.mul(3).add(timePhase.mul(1.3)).cos(), -1, 1, 0.2, 1.0) const blueMapping = mapRange(polarRadius.mul(6).sub(polarAngle.mul(2).add(timePhase.mul(0.7))).sin(), -1, 1, 0.3, 0.8) const intensityField = mapRange(polarRadius.mul(8).sub(timePhase.mul(2)).cos(), -1, 1, 0.6, 1.4) const chromaMatrix = vec3(redMapping, greenMapping, blueMapping).mul(intensityField) return vec4(chromaMatrix, 1) }