modi: Discrete Periodicity Mathematics
Integer Domain Periodicity
The modi
function creates discrete periodic structures by constraining integer values within specified boundaries. This operation establishes mathematical periodicity through remainder calculation, enabling precise control over discrete pattern generation.
Unlike continuous modulo operations, modi
maintains integer precision throughout the calculation process, making it essential for algorithmic pattern creation and discrete mathematical visualizations.
const fragment = () => { const uv = position.xy.div(iResolution).sub(0.5).mul(20) // Create discrete cellular automata-like patterns const cellX = uv.x.toInt() const cellY = uv.y.toInt() const pattern = modi(cellX.mul(cellY), int(7)) const intensity = pattern.toFloat().div(6) const color = vec3( intensity.mul(pattern.toFloat().sin()), intensity.mul(pattern.toFloat().mul(2).cos()), intensity.mul(pattern.toFloat().mul(3).sin()) ) return vec4(color, 1) }
Prime Number Visualization
Mathematical prime number theory visualization through modulo arithmetic creates complex interference patterns that reveal number-theoretic structures invisible to continuous mathematics.
const fragment = () => { const uv = position.xy.div(iResolution).sub(0.5).mul(12) // Prime modulo visualization const x = uv.x.mul(3).toInt() const y = uv.y.mul(3).toInt() const mod3 = modi(x, int(3)) const mod5 = modi(y, int(5)) const r = mod3.toFloat().div(2) const g = mod5.toFloat().div(4) const b = r.mul(g) return vec4(r, g, b, 1) }
Mathematical Foundation
Discrete Modulo Arithmetic
The modi
function implements integer remainder calculation maintaining discrete mathematical properties:
This ensures the result satisfies: for positive divisors.
For integer domain operations, the mathematical relationship can be expressed as:
Periodicity Properties
The modulo operation creates periodic boundary conditions where adding multiples of the divisor maintains the same remainder value. This periodicity enables construction of discrete tiling patterns and algorithmic visualizations.
Computational Architecture
Phase | Mathematical Operation | Implementation Logic |
---|---|---|
Division | Integer division with floor | x.div(y).floor() |
Multiplication | Quotient scaling | quotient.mul(y) |
Subtraction | Remainder extraction | x.sub(scaled_quotient) |
The algorithm maintains integer precision throughout the computation, ensuring discrete mathematical correctness essential for algorithmic pattern generation and number-theoretic visualizations.